
Dynamic Server Pages and Output Templates
Developer’s Guide

Version 11.1

September 2024

Copyright Super iPaaS Integration LLC, an IBM Company 2024

Document ID: IS-DSP-DG-111-20240913

Table of Contents

About this Guide..5
Document Conventions...6

1 Using Dynamic Server Pages (DSPs)..7
What Is a Dynamic Server Page?..8
Creating DSPs...9
Publishing DSPs..10
Securing DSPs...10
Requesting DSPs...14
Hyperlinks to DSPs..15
Using the DSP Tags..15
Arbitrarily Processing DSP Tags..31

2 Using Output Templates to Format Service Output...33
What is an Output Template?...34
What Does an Output Template Look Like?..34
When Does the Server Use an Output Template?...35
Creating an Output Template...37
Assigning an Output Template to a Service...39
Securing Pages and Documents Created from Output Templates..39

A Tag Descriptions...41
Overview...42
%comment%..43
%ifvar%..44
%include%...46
%invoke%..47
%loop%..49
%loopsep%..52
%nl%...52
%rename%...53
%scope%..54
%switch%...57
%sysvar%...59
%validConst%...60
%value%...61

B DSPs and Output Templates in Different Languages...65
Overview...66
Creating DSPs and Templates in Other Languages..66
Using Localized DSPs and Templates...67
The localeID Value..70

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 iii

iv Dynamic Server Pages and Output Templates Developer’s Guide 11.1

Table of Contents

About this Guide

■ Document Conventions .. 6

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 5

This guide is for those developers whowant to build browser-based clients using Dynamic Server
Pages (DSPs) and who want to build output templates to format the results of services executed
on IBM webMethods Integration Server.

Note:
This guide describes features and functionality that may or may not be available with your
licensed version of IBM webMethods Integration Server. For information about the licensed
components for your installation, see the Server > Licensing page in the IBM webMethods
Integration Server Administrator.

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service, APIs,
Java classes, methods, properties.

Narrowfont

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

6 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

■ What Is a Dynamic Server Page? .. 8

■ Creating DSPs .. 9

■ Publishing DSPs ... 10

■ Securing DSPs ... 10

■ Requesting DSPs ... 14

■ Hyperlinks to DSPs .. 15

■ Using the DSP Tags ... 15

■ Arbitrarily Processing DSP Tags ... 31

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 7

What Is a Dynamic Server Page?

A dynamic server page (DSP) is a document embeddedwith special codes (tags) that instruct IBM
webMethods Integration Server to perform certain actions when an HTTP (or HTTPS) client
requests the document. DSPs are used to construct browser-based applications. Because they are
HTML based, they can be used to build complex user interfaces that includes any valid construct
(e.g., forms, cascading style sheets, JavaScript) recognized by the client’s browser.

Important:
When Integration Server returns a DSP, it always sets the value of the HTTP content-type

header field to text/html. Therefore, a DSP should only containHTML content and should only
be used by clients that recognize and accept this content type.

What Does a DSP Look Like?
ADSP looks like an ordinaryHTMLdocument that contains additional tags enclosed in% symbols
(e.g., %loop%). When a client requests a DSP, Integration Server executes the action specified by
the tag and substitutes the result of that action (based on the rules of the tag) in the document it
returns to the client.

Note:
A DSP tag is never sent to the client; the client receives only the result of the tag.

The following is an example of a very basic DSP (tags are in bold). In this example, the DSP invokes
a service byway of the %invoke% tag. The %loop% … %endloop% block loops over the list of documents
(called orders) that the service returns and inserts the results into the HTML document.
<HTML>
<HEAD>
<title>Order Tracking System>/title>
</HEAD>

<BODY>
<h1>Current Orders</h1>
%invoke orders:showOrders%
%loop orders%
<p>Date: %value orderDate% PO Number %value orderNum%</p>
%endloop%
%endinvoke%
</BODY>

When Do You Use DSPs?
DSPs are used to build browser-based clients (i.e., clients that use a web browser to retrieve
documents). They allow you to construct a more secure and flexible user interface than can be
built by directly invoking a service from a browser.

IBMwebMethods Integration Server Administrator is a good example of the type of user interface
you can create with DSPs. The interface for this application is composed entirely of DSPs. You
may want to refer to it for design ideas and examples of how to use particular tags. To examine

8 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

the DSPs that make up the server’s user interface, look at the DSP files in the
Integration Server_directory\packages\WmRoot\pub directory on your Integration Server.

What Are the Advantages of Using DSPs?
In the example in “What Does a DSP Look Like?” on page 8, the DSP invokes a service and
displays its results. You could accomplish the same thing by invoking the service directly from a
browser and applying an output template to the result. However, DSPs have several advantages
over directly invoking a service with a URL:

They conceal the INVOKE mechanism and the name of the service from the user.

They give you the flexibility to change the name of a service or replace one servicewith another
without changing theway inwhich the end user invokes the service. (The user always invokes
the same DSP, whose contents you can change as needed.)

They can easily be updated and extended.

They allow you to execute multiple services via a single request.

They allow you to conditionally execute a service based on run-time input. For example, you
might build a DSP that actually contains several different HTML pages, and use the %switch%
tag to select among them.

Creating DSPs

To create a DSP, you must compose it with a text editor and then save it on Integration Server (see
“Publishing DSPs” on page 10). Unlike output templates, you do not create DSPs with Service
Development.

When you build a DSP, do the following:

Type literal text exactly as you want it to appear in the document that you want Integration
Server to return to the client.

Insert DSP tags at the points where you want their results to appear. For a summary of valid
DSP tags and how to use them, see “Using the DSP Tags” on page 15.

Make sure that your HTML file contains the proper encoding or META tag for the encoding
you use, as this may affect the browser or parser performance outside the Integration Server.

Important:
Make sure the document that you create resolves into a valid HTML document.

Note:
While building your DSP, keep in mind that at run time Integration Server will process it once,
from top to bottom.

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 9

1 Using Dynamic Server Pages (DSPs)

File Encoding and Character Set Limitations
The file encoding you use limits the characters that you can use in your DSP (including the data
inserted into your DSP using %VALUE% statements) to those in the character set of the encoding
you choose. It also limits any translated versions of the DSPs to the same character set. Generally
it is a good idea to use the UTF-8 (Unicode) encoding, since Unicode supports nearly all of the
characters in all of the world's languages. You will not lose any data if you choose to save your
DSP in UTF-8; any data entered into a form will be properly interpreted by Integration Server.

The encoding you choose also applies to any localized (translated) versions of the DSP that you
create, so you should choose a character encoding that supports all of the languages for which
you will create localized DSPs. For details, see “DSPs and Output Templates in Different
Languages” on page 65.

Publishing DSPs

To run a DSP, you must publish it on an Integration Server. To do this, take the following general
steps.

1. Save the DSP document in a text file that has a “.dsp” extension. For example: showorders.dsp.

2. Place the DSP file in the pub directory of the package in which you want the dsp to reside. For
example:

To publish a DSP in the orders package, you would copy it to:

Integration Server_directory\packages\orders\pub

To publish a DSP in the status subdirectory within the orders package, you would copy it
to:

Integration Server_directory\packages\orders\pub\status

For details about publishingDSPs in other languages, see “DSPs andOutput Templates inDifferent
Languages” on page 65.

Securing DSPs

The following sections describe how you can secure DSPs against unauthorized access, secure
against cross site scripting (XSS) attacks, and limit the external URLs to which a page can be
redirected.

Securing DSPs Against Unauthorized Access
When you publish a DSP, you need to configure the server’s security mechanisms to protect the
DSP from unauthorized access. DSPs have two levels of security protection you need to set.

Access to the DSP itself. Access to a DSP is controlled by an Access Control List (ACL). An
ACL specifies which users have permission to retrieve the DSP. An ACL allows you to make

10 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

access to the DSP as liberal (e.g., allow access to anyone) or as restrictive (e.g., restrict access
to only certain people) as you need.

To assign an ACL to a DSP, you must update (or create) the .access file in the directory where
the DSP resides. For procedures, see “Assigning ACLs to Files the Server Can Serve” in IBM
webMethods Integration Server Administrator’s Guide.

Note:
Unlike a service, access to a DSP cannot be restricted to a particular port. Thus you do not
specify port-level controls for a DSP.

Access to services invoked by the DSP.When a user requests a DSP, the services invoked by
the DSP are subject to a port-level check (against the port on which the DSP was requested)
and an ACL check (against the user that requested the DSP). To ensure that the services in
your DSP execute successfully, you must do the following:

Make sure that the services it invokes are allowed to execute on the port(s) where the DSP
will be requested.

Make sure that users who are authorized to use the DSP are also authorized to execute the
services that the DSP invokes. (For convenience, you might want to assign the same ACL
to the DSP and to the services it invokes.)

For information about configuring port-level security and assigningACLs to services, see IBM
webMethods Integration Server Administrator’s Guide.

Note:
A service that is internally invoked by a service in a DSP is not subject to security control
unless Enforce Execute ACL is set (in the Properties panel) for the internally invoked
service. When this option is set, the server performs an ACL check on the service using the
user ID under which the DSP was initially requested.

Securing DSPs Against Cross Site Scripting Attacks
If you have custom DSPs that use the %value Variable% tag, the output from the tag might be
vulnerable to cross site scripting (XSS) attacks. To prevent these cross site scripting attacks, set the
watt.core.template.enableFilterHtml parameter to true (the default). When this parameter is true,
the output from a %value Variable% tag, including XML and JavaScript, is HTML encoded.

When the watt.core.template.enableFilterHtml parameter is set to true, if you do not want
Integration Server to HTML encode the output from a %value Variable% tag, you can use the
encode(none) option of the %value Variable% tag, (%value Variable encode(none)%).

If you do not want Integration Server to HTML encode the output from any %value Variable% tag
in all DSPs, set the watt.core.template.enableFilterHtml parameter to false. Setting the
watt.core.template.enableFilterHtml parameter to false does not override settings of the
%value Variable% tag’s encode option.

Important:
If you use encode(none) so that the output from a %value Variable% tag is not HTML encoded,
that value is vulnerable to cross site scripting attacks. If you set the

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 11

1 Using Dynamic Server Pages (DSPs)

watt.core.template.enableFilterHtml parameter to false, all DSPs that use the %value Variable%

tag are vulnerable to cross site scripting attacks.

For more information about the encode(none) option, see “%value%” on page 61. For more
information about the watt.core.template.enableFilterHtml parameter, see IBM webMethods
Integration Server Administrator’s Guide.

Securing DSPs Against CSRF Attacks
Integration Server adds CSRF secure tokens inDSPs dynamically thereby ensuring that the custom
DSPs are secured against CSRF attacks.

However, Integration Server does not insert CSRF secure tokens in custom DSPs that use the
JavaScripts Location object such as document.location andwindow.location.href. Youmust update
these pages manually.

For example, if you have the following code in your custom DSP:
document.location="ldap-settings.dsp";

You must replace it with the following code, enabling the GET request:
if(is_csrf_guard_enabled && needToInsertToken) {

document.location="ldap-settings.dsp?"
+ _csrfTokenNm_ + "=" + _csrfTokenVal_;

} else {
document.location="ldap-settings.dsp";

}

You do not have to define the JavaScript variables _csrfTokenNm_, _csrfTokenVal_,
is_csrf_guard_enabled, and needToInsertToken. But, you must import
Integration Server_directory/WmRoot/csrf-guard.js to your DSP before using these variables, if you
have not already imported /WmRoot/webMethods.js.

In GET requests, Integration Server inserts the CSRF secure token in the URL, thus displaying the
CSRF secure token. When the CSRF guard is enabled (Security > CSRF guard page in the IBM
webMethods Integration ServerAdministrator), to further secure theDSPs, IBM recommends that
you replace the GET requests with POST requests. POST requests eliminate the risk of sending
the CSRF secure tokens in URLs. To replace a GET request by a POST request, pass the values as
HTML form properties. To create new HTML form and set the properties in the form, use the
createForm(<FORM_ID>, <ACTION>, "POST", <PARENT_TAG>) and setFormProperty(<FORM_ID>,

<PROPERTY_ID>, <PROPERTY_VALUE>)methods defined in JavaScript webMethods.js.

For example, if the CSRF guard is enabled, to convert the aboveGET request code to POST, replace
it with the following code:

Note:
If the CSRF guard is disabled, continue to use the GET request.

if(is_csrf_guard_enabled && needToInsertToken)
{
createForm("htmlForm_listeners ", 'ldap-settings.dsp', "POST", <PARENT_TAG>);
setFormProperty(“htmlForm_listeners”, _csrfTokenNm_, _csrfTokenVal_);

12 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

htmlForm_listeners.submit();
} else {
document.location="ldap-settings.dsp";
}

The <PARENT_TAG> can be head or body based on whether this code belongs to head or body of the
DSP.

Integration Server inserts CSRF secure tokens in the links in DSPs only if these links point to a
DSP. If these links do not point to a DSP, you must update these links manually to include the
CSRF secure tokens. For example, if you have the following code in your DSP:

<a href="/invoke/wm.sap.Transaction/viewAs?type=xml

If the CSRF guard is enabled, to convert it to POST request, create a new HTML form as shown
below and change the link in the DSP:

Note:
If the CSRF guard is disabled, continue to use the GET request.

if(is_csrf_guard_enabled && needToInsertToken)
{
createForm(“htmlform_transactionView”,
“="/invoke/wm.sap.Transaction/viewAs”, POST, <PARENT_TAG>);
setFormProperty(“htmlform_transactionView”, “type” “xml”);
setFormProperty(“htmlform_transactionView”, _csrfTokenNm_, _csrfTokenVal_);

} else {
<a href="/invoke/wm.sap.Transaction/viewAs?type=xml
}

If the links in DSP point to another DSP, Integration Server automatically inserts CSRF secure
token in the links. To further enhance the security, it is recommended that you convert the link in
DSP as a POST request if it points to another DSP, provided the CSRF guard is enabled. For
example, if you have the following code in your DSP:

After Integration Server inserts the CSRF secure token in the URL, the code is changed to the
following:

<a href="security-ports-add.dsp?secureCSRFToken=<token_id>">

If the CSRF guard is enabled, to convert it to POST request, create a new HTML form as shown
below and change the link in the DSP:

Note:
If the CSRF guard is disabled, continue to use the GET request.

if(is_csrf_guard_enabled && needToInsertToken) {
createForm(“htmlform_security_ports”, “security-ports-add.dsp”, “POST”, <PARENT_TAG>);
setFormProperty(“htmlform_security_ports”, “action”, “add”);
Add Port
} else {
Add Port
}

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 13

1 Using Dynamic Server Pages (DSPs)

For more information about configuring CSRF guard in Integration Server, see IBM webMethods
Integration Server Administrator’s Guide.

Limiting the External URLs that Can Be Used for Redirection
Use the %validConst% tag in customDSPs to specify a list of URLs towhich a page can be redirected.
By specifying the %validConst% tag, the page can only be redirected to the URLs you specify.

For more information about how to use this tag, see “Specifying a List of Permitted URLs for
Redirection” on page 30.

Requesting DSPs

To process a DSP, you request it from a browser using the following URL format:

http://hostName:portNum/packageName/fileName.dsp

where:

Is the host name or IP address of the Integration Server on which the DSP
resides.

hostName

Is the port number onwhich the Integration Server listens forHTTP requests.portNum

Is the name of the package to which the DSP belongs. packageNamemust
match the package directory in which the DSP resides within

packageName

Integration Server_directory\packages on the server. If you do not specify a
package name, the server looks for the named DSP in the Default package.

Note:
This parameter is case-sensitive.

Is the name of the file containing the DSP. This file name must have a “.dsp”
extension, and it must reside within the pub directory (or a subdirectory

fileName.dsp

beneath pub) under the package directory named in packageName. If the DSP
resides in a subdirectory, include the name of that subdirectory in the file
name (see example below).

Note:
This parameter is case-sensitive.

Examples

The following URL retrieves showorders.dsp from a package named ORDER_TRAK on a server
named rubicon:

http://rubicon:5555/ORDER_TRAK/showorders.dsp

14 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

The following URL retrieves showorders.dsp from a package named ORDER_TRAK on a server
named rubicon:

http://rubicon:5555/ORDER_TRAK/showorders.dsp

The following URL retrieves showorders.dsp from the STATUS subdirectory in a package named
ORDER_TRAK on a server named rubicon:

http://rubicon:5555/ORDER_TRAK/STATUS/showorders.dsp

The followingURL retrieves showorders.dsp from theDefault package on a server named rubicon:

http://rubicon:5555/showorders.dsp

Hyperlinks to DSPs

Typing the DSP’s URL on the address line in your browser is one way to run a DSP. However,
when you use DSPs to build a user interface, you will often invoke DSPs from HTML forms and
links as shown in the following example.
<HTML>
<HEAD>

<title>Order Tracking System</title>
</HEAD>

<BODY>
Show

Orders
</BODY>
</HTML>

Using the DSP Tags

To develop a DSP, you embed DSP tags where you want the results of the tags to appear. The
following is a summary of tags that you can use to build DSPs. For a complete description of each
tag, see “Tag Descriptions” on page 41.

Important:
DSP tags are case sensitive. In your DSP, youmust type them exactly as shown below (e.g., type
%loop%, not %LOOP%).

To...Use this tag...

Invoke a service within a DSP.%invoke%

Manipulate variables.%value% %rename%

%scope%

Conditionally process a block of code within a DSP.%ifvar% %switch%

Reiterate a block of code within a DSP.%loop%

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 15

1 Using Dynamic Server Pages (DSPs)

To...Use this tag...

Insert the content of a text file (which may contain additional DSP tags) into
the DSP.

%include%

Limit the external URLs that can be accessed via redirection.%validConst%

Denote a comment within a DSP. Comments are neither processed by the
DSP Processor nor returned to the requestor.

%comment%

Note:
Integration Server automatically resolves tags when a client requests that DSP via an HTTP or
HTTPS request. If you want to resolve tags within a document at some arbitrary point in a
service, you can explicitly run the DSP Processor against the document using the services in the
pub.report folder. For information about using these services, see “Arbitrarily Processing DSP
Tags” on page 31.

Begin...End Constructs
Many DSP tags have both beginning and ending elements. When you use the %loop% tag, for
example, you enclose the code over which you want the DSP Processor to iterate, within a
%loop%…%end% construct.

To make your DSP easier to read, you can append a suffix to the %end% element of any construct
to visually associate it with its beginning element. For example, in the following DSP, the %end%
element of the %loop% construct is named %endloop% and the %end% element for the %ifvar% construct
is named %endifvar%.
.
.
.
%ifvar orders%
%loop orders%
<p>Date: %value orderDate%PO Number: %value orderNum%</p>
%endloop%
%endifvar%
.
.
.

Be aware that only the first three characters of an %end% element are significant. The DSP Processor
ignores any suffixes that you add and simply associates an %end% element with the most recent
beginning element (in other words, the %end% element always ends the current construct). This
means that you can nest one construct within another (as shown above), but you cannot overlap
them.

For example, you cannot use the %comment%…%endcomment% construct to “remark out” an %endloop%

element as shown in the following sample. Because the DSP Processor ignores suffixes, the first
%endloop% tag would end the comment block, and the %endcomment% tag would end the loop.

.

.

16 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

.
%ifvar orders%
%loop orders%
<p>Date: %value orderDate% PO Number: %value orderNum%</p>

%comment%
<p>Buyer: %value orderDate% PO Number: %value orderNum%</p>
%endloop%

%endcomment%
<p>Shipping Details:</p>
<p>Date Shipped: %value shipDate%

Carrier: %value carrier% %value serviceLevel%

==</p>

%endloop%
%endifvar%
.
.
.

Invoking Services Using the %invoke% Tag
You use the %invoke% tag to invoke a service in a DSP. When this tag is processed, Integration
Server executes the specified service at the point where the tag appears and returns the results of
the service to the DSP processor.

The basic format of the %invoke% tag is as follows, where serviceName is the fully qualified name
of the service that you want to invoke:
%invoke serviceName%
Block of Code

[%onerror%
Block

of Code]
%end%

Example
.
.
.
%invoke orders:getShipInfo%
<p>
Date Shipped: %value shipDate%

Carrier: %value carrier% %value serviceLevel%
</p>

%onerror%
%include standarderror.txt%

%endinvoke%
.
.
.

What Is Scope?

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 17

1 Using Dynamic Server Pages (DSPs)

When you invoke a service in a DSP, notice that you do not specifically state which parameters
you want to pass to it. Instead, the service automatically receives an IData object containing all
the variables that are in the DSP’s current scope.

Scope refers to the set of variables upon which a DSP can operate directly. When a DSP is initially
invoked, its scope encompasses the set of name=value pairs it receives (via GET or POST) from the
requestor. For example, if you were to request a DSP with the following URL:

http://rubicon:5555/ORDER_TRAK/getorderinfo.dsp?action=shipinfo&oNum=00011520

Its initial scope would look like this:

After you execute a service with the %invoke% tag, the scope automatically switches to encompass
the set of variables returned by that service. For example, if the DSP in the preceding example
invokes a service that returns shipping information, that DSP’s collection of variables would look
like this after the service executes. Note that just the variables returned by the service are within
scope.

Conceptually, you can think of a DSP as maintaining its run-time variables in a set of nested
containers. It starts with a container that holds the variables submitted by the requestor. When a
service is invoked, it puts the results from the service in a new container inside the initial
container—the new container comprises the current scope. If another service is invokedwhile that
container is open, the variables returned by the from the service are put into another container,
which is placed inside the previous container, and so forth.

Note:
Besides the %invoke% tag, certain other tags (e.g., %loop%) implicitly switch scope. This behavior
is noted in the tag descriptions in the .

Why Does Scope Matter?
Understanding (and controlling) the scope within a DSP is important for two reasons:

18 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

Only those variables that are within the current scope are passed to a service that you invoke
in a DSP. So, to ensure that a service receives all the variables it needs at run time, you must
make sure that all those variables are within the scope. For more information about passing
parameters to and within a DSP, see “Passing Parameters with a DSP” on page 21.

Only those variables that arewithin scope can be addressedwithout qualifiers. (See “Referencing
Variables In and Out of Scope” on page 21.) Moreover, except for the initial scope (whose
variables exist for the entire life of a DSP), certain tags, such as the %end% tag, cause the current
scope to close and discard the variables within it.

Ending the Scope of the Invoke Action

The %end% element in the %invoke%…%end% construct ends the scope for that invoke. It marks the
point in the DSPwhere the variables associatedwith that construct are dropped and scope reverts
to the previous level.

The following example shows a DSP that invokes two services in sequence. In this DSP, both
services receive the variables from the initial scope as input. The two %invoke% blocks are highlighted
in bold in the sample.
<HTML>
<HEAD>
<title>Order Tracking System</title>
</HEAD>
<!--User passes in order number in param named oNum> -->
<!--The initial scope contains only <oNum> -->

%invoke orders:getShipInfo%
<!--Scope switches to results

of getShipInfo -->
<!--You can reference variables

in the initial scope -->
<!--with a relative addressing

qualifier -->
<p>
Order: %value /oNum%

Date Shipped: %value shipDate%

Carrier: %value carrier% %value

serviceLevel%
</p>

%endinvoke%

<!--Scope reverts to the initial scope -->
<!--Results from getShipInfo have been discarded -->
<!--and cannot be accessed beyond this point -->

%invoke orders:getCustInfo%
<!--Scope switches to results

of getCustInfo -->
<!--You can reference variables

in the initial scope-->
<!--with a relative addressing

qualifier -->
<table>
<tr><td>Company:</td>

<td>%value companyName%</td></tr>

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 19

1 Using Dynamic Server Pages (DSPs)

<tr><td>Phone:</td>
<td>%value phoneNum%</td></tr>

<tr><td>Address:</td>
<td>%value StreetAddr1%

%value StreetAddr2%</td></tr>
<tr><td></td> <td>%value

city%, %value state%</td></tr>
<tr><td></td> <td>%value

postalCode%</td></tr>
</table>

%endinvoke%

<!--Scope reverts to the initial scope -->
<!--Results from getCustInfo have been discarded -->
<!--and cannot be accessed beyond this point -->
</BODY>
</HTML>

<HTML>
<HEAD>
<title>Order Tracking System</title>
</HEAD>
<!--User passes in order number in param named <oNum> -->
<!--The initial scope contains only <oNum> -->

%invoke orders:getShipInfo%
<!--Scope switches to results
of getShipInfo -->
<!--You can reference variables
in the initial scope -->
<!--with a relative addressing
qualifier -->

<p>
Order: %value /oNum%

Date Shipped: %value shipDate%

Carrier: %value carrier% %value

serviceLevel%
</p>

%invoke orders:getCustInfo%
<!--Scope switches to results
of getCustInfo -->
<!--You can reference variables
in the initial scope -->
<!--and prior scope with relative
addressing qualifiers -->

<table>
<tr><td>Company:</td>

<td>%value companyName%</td></tr>
<tr><td>Phone:</td>

<td>%value phoneNum%</td></tr> <tr><td>Address:</td> <td>%valueStreetAddr1%

%value StreetAddr2%</td></tr>

<tr><td></td> <td>%value
city%, %value

state%</td></tr>
<tr><td></td> <td>%value

postalCode%</td></tr>
</table>

%endinvoke%
<!--Scope reverts back to results
of getShipInfo -->

20 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

<!--Results from getCustInfo
have been discarded -->
<!--and cannot be accessed beyond

this point -->
%endinvoke%

<!--Scope reverts to the initial scope -->
<!--Results from getShipInfo have been discarded -->
<!--and cannot be accessed beyond this point -->
</BODY>
</HTML>

Referencing Variables In and Out of Scope

You can refer to variables that are in the current scope directly—without any qualifiers. To reference
a variable that is out of scope, you must use the following directory-like notation to describe its
position relative to either the current scope or the initial scope.

To...Use this notation...

Reference a variable in the current scope. For example: shipNum.variableName

Reference a variable one or more levels above the current scope. For
example:

../variableName

One level above../oNum

Two levels above../ ../oNum

Reference a variable in the initial scope. For example: /oNum./variableName

Reference a variable within a specific document. For example:recName/variableName

Selects the state element from the
document buyerInfo in the current
scope

buyerInfo/state

Selects the state element from the
document buyerInfo one level above
current scope

../buyerInfo/oNum

Passing Parameters with a DSP
You use the standard HTTP “GET” and “POST” methods to pass input parameters to a DSP. In a
browser-based client, you usually do this with an HTML form. For example, if you were creating
an order-tracking application, youmight create a form that prompts the user for an order number
and invokes a DSP that returns the shipping status of that order.

You can use an HTML form to pass input to a DSP

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 21

1 Using Dynamic Server Pages (DSPs)

Use an HTML <FORM> tag to invoke a DSP. Then, use HTML <INPUT> tags to pass input
parameters to it.
<HTML>
<HEAD>
<TITLE>Order Tracking System</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFCC">
<H1>Shipping Information</H1>
<HR>
<FORM ACTION="/ORDER_TRAK/getorderinfo.dsp"
METHOD="GET">
<P>Enter Order Number <INPUT TYPE="TEXT" NAME="oNum">

<INPUT TYPE="HIDDEN" NAME="action"

VALUE="shipinfo">

<INPUT TYPE="SUBMIT" VALUE="Submit">
</FORM>

<HR>
</BODY>

When the DSP is invoked, its initial scope encompasses two parameters: oNum and action. Services
that you invoke within this scope receive an IData object containing these two elements.

The following code shows the contents of the DSP (getorderinfo.dsp) invoked by the previous
example. It uses the value in action to conditionally execute a section of the DSP that invokes the
service. (For more information about using the %switch% tag to conditionally execute a section of
code, see “Building Conditional Blocks with the %switch% Tag” on page 28.)
<HTML>
<HEAD>
<title>Order Tracking System</title>
</HEAD>
<BODY BGCOLOR="#FFFFCC">

<!--User passes in order number in param named <oNum> -->
<!--and requested action in <action> -->

<H1>Order Tracking System</H1>
%switch action%
%case ‘shipinfo’%
%invoke orders:getShipInfo%
<p>
Order: %value /oNum%

Date Shipped: %value shipDate%

Carrier: %value carrier% %value serviceLevel%
</p>

22 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

%endinvoke%
%case ‘orderinfo’%
%invoke orders:getOrderInfo%

.

.

.

Passing Parameters Between DSPs

BecauseHTTP does not preserve variables from one request to another, to pass data from oneDSP
to another, you must explicitly set those values in the documents that you return to the requestor.
For example, let’s say you want to allow your user to view or edit the shipment displayed by the
order-tracking DSP above. To do this, you must return a document containing links to the DSPs
that perform these tasks, and theseDSPswill need the order number (oNum) that the user submitted
on the original page. To pass the order number to these DSPs, youmust put oNum in the page you
return to the client.

The following example shows two ways in which you can build a DSP that will pass a variable to
another DSP. The first portion of code in bold illustrates how you can pass a parameter in a hidden
input element. The second portion of code in bold illustrates how you can pass a parameter as a
name-value pair in a link to a DSP.
<HTML>
<HEAD>
<title>Order Tracking System</title>
</HEAD>
<BODY BGCOLOR="#FFFFCC">

<H1>Order Tracking System</H1>
<!--User passes in order number in param named <oNum> -->
<!--and requested action in <action> -->
%switch action%
%case ‘shipinfo’%
%invoke orders:getShipInfo%
<H2>Shipping Information for Order %value /oNum%</H2>
<P>Date Shipped: %value shipDate%

Carrier: %value carrier% %value serviceLevel%
</P>
<HR>
%ifvar shipDate -isnotempty%
<FORM ACTION="/ORDER_TRAK/editshipinfo.dsp" METHOD="get">
<P>Change this Shipment:</P>
<P><INPUT TYPE="RADIO" NAME="action" VALUE="edit">
Edit Shipment Details</P>

<P><INPUT TYPE="RADIO" NAME="action" VALUE="cancel">
Cancel this shipment</P>
<INPUT TYPE="SUBMIT" VALUE="Submit">

<INPUT TYPE="HIDDEN" NAME="oNum" VALUE="%value /oNum">
</FORM>
<HR>

%endifvar%
<P><A HREF="/ORDER_TRAK/getorderinfo.dsp

?action=orderinfo&oNum=%value /oNum%">View Entire Order</P>
%endinvoke%
%case ‘getorder’%
%invoke orders:getOrderInfo%
.

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 23

1 Using Dynamic Server Pages (DSPs)

.

.

Passing Parameters Between Services within a DSP

To pass data between services within a DSP, you can use any of the following techniques:

Invoke the service that needs the parameter within the scope of the service that produces the
parameter.When a service is invoked in aDSP, it receives all of the variables that are “in scope”
at the point where it is invoked. For an example of this, see the sample code on “Ending the
Scope of the Invoke Action” on page 19.

Use the %rename% tag to copy a variable that is out of scope into the current scope. For details
and examples, see the %rename% tag description on “%rename%” on page 53.

Use the %scope% tag to add a variable to the current scope and specify its value. For details and
examples, see the %scope% tag description on “%scope%” on page 54.

Catching Errors
If you want your DSP to react in a specified way when the invoked service fails, include an
%onerror% tag within your %invoke%…%end% construct. The code in the %onerror% block executes
only if an exception occurs while the service executes or the service returns an error.

When the %onerror% block executes, the scope contains the following values:

DescriptionKey...

A String containing the Java class name of the exception that was thrown
(e.g., com.wm.app.b2b.server.AccessException).

error

AString containing the exceptionmessage in English, regardless of the locale
of the server or client.

errorMessage

AString containing the exceptionmessage, translated into the language used
by the client that invoked the DSP.

localizedMessage

The IData object that was passed to the invoked service.errorInput

The IData object returned by the invoked service. If the service returned an
error, errorOutputwill contain $error and any other variables that were in
the pipeline when the service ended.

errorOutput

Important:
If the service experiences an exception (i.e., the server is not able to execute
it successfully), errorOutputwill not be exist. This variable is only produced
when the service returns an error.

The name of the invoked service.errorService

24 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

The following example shows how you might use an %onerror% clause to return an error message
to the user.
.
.
.
%invoke orders:getShipInfo%
<H2>Shipping Details for Order %value /oNum%</H2>
<P>Date Shipped: %value shipDate%

.
.
.
%onerror%

<HR>
<P>The

Server could not process your request
because the following error occurred.

Contact your server
administrator.</P>
<TABLE WIDTH="50%" BORDER="1">
<TR><TD>Service</TD><TD>%value

errorService%</TD></TR>
<TR><TD>Error</TD><TD>%value

Error%
%value errorMessage%</TD></TR>

</TABLE>
<HR>

%endinvoke%
.
.
.

Extracting Results from an Array Variable
If a service returns an array variable—such as a String list, a String table, or a document list—to
a DSP, you use the %loop% tag with a variableName to extract values from the elements in the array.

When you use %loop% on a document variable, the scope within the loop block automatically
changes to encompass just those elements within the specified document.

The following example shows a loop that extracts values from a document list (called items) that
is returned by the service named orders:getOrderInfo.
%invoke orders:getOrderInfo%
<P>This shipment contains the following items</P>
<TABLE WIDTH="90%" BORDER="1">
<TR><TD>Number</TD><TD>Qty</TD><TD>Description</TD><TD>Status</TD></TR>

%loop items%
<TR>
<TD>%value stockNum%</TD>
<TD>%value qty%</TD>
<TD>%value description%</TD>
<TD>%value status%</TD>
</TR>

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 25

1 Using Dynamic Server Pages (DSPs)

%endloop%

</TABLE>
%endinvoke%
.
.
.

For additional information about the %loop% tag, see the %loop% tag description on “%loop%” on
page 49.

Extracting Results from a Document
To extract results from a document (i.e., an IData object), you use the %loop% tag with the -struct
option to execute a block of code once for each key in the structure.

The following example shows how youwould extract values from each key in a document named
buyerInfo.
%invoke orders:getOrderInfo%
<P>Buyer:</P><P>
%loop -struct buyerInfo%
%value%

%endloop%

</TABLE>
.
.
.

Using the %loop% Tag to Examine the Current Scope

If you use the –struct option without specifying the name of a document, the loop executes once
for each element in the current scope. During testing and debugging, you may want to use this
technique to examine the variables and their values at a particular point in the DSP. The following
example shows the code you would use to display the name of each key and its contents in the
current scope.

.

.

.

<P>
%loop -struct%
%value $key% %value%

%endloop%
</P>
.
.
.

26 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

Conditionally Executing Blocks of Code
There are two tags you can use to conditionally execute code in a DSP: %ifvar% and %switch%. Both
tags selectively execute a block of code based on the existence or value of a variable at run time.

Building Conditional Blocks With the %ifvar% Tag

The %ifvar% tag is similar to an “if…then…else” expression in other programming languages. You
use it to denote a block of code that is to be executed only when a specified variable exists or
contains a value that you specify.

The basic format of the %ifvar% tag is as follows, where variableName specifies the name of the
variable that will be evaluated at run time:
%ifvar variableName%
Block of Code

[%else%
Block of Code]

%end%

Example
.
.
.

<!--Check for presence of backordered items in the order -->
<!--and display if they exist -->
%ifvar backItems%

<p>Backordered Items
%loop backItems%
%value%

%endloop%
%endifvar%

.

.

.

Testing for a Particular Value

In the preceding example, the enclosed block of code executes if a variable named backItems exists
in the current scope. To test for the content of a variable, you can apply the following options to
the %ifvar% tag.

To...Use this option...

Test whether the specified variable exists and is null.-isnull

Test whether the specified variable contains a value (i.e., the value is
not null or empty).

-notempty

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 27

1 Using Dynamic Server Pages (DSPs)

To...Use this option...

Test whether the specified variable contains a specific value.
(variableNamemust be a String variable to use this option.)

equals(‘anyString’)

Test whether the value of the specified variable matches the contents
of another variable in the pipeline.

vequals(refVariable)

The following example shows an %ifvar%…%else%…%end% construct that executes one of two blocks,
depending on the contents of a variable named clubMember.

.

.

.
%invoke orders:getShipInfo%
<H2>Shipping Details for Order %value /oNum%</H2>
<P>Date Shipped: %value shipDate%

.
.
.

%ifvar clubMember equals(‘Y’)%
%include membershipterms.txt%

%else%
%include nonmembershipterms.txt%

%endifvar%

%endinvoke%
.
.
.

For additional information about the %ifvar% tag, see the %ifvar% description on “%ifvar%” on
page 44.

Building Conditional Blocks with the %switch% Tag

You can use the %switch% tag to construct a conditional expression based on the value of a specified
variable. The %switch% tag allows you to define a separate block of code (a case) for each value
that a variable can take at run time. You use this tag instead of %ifvar%when you have more than
two possible paths of execution. (You can also handle multiple paths of execution by building
multiple %ifvar% expressions, however, the %switch% tag is much easier to use and maintain for
this purpose.)

The basic format of the %switch% tag is as follows, where variableName specifies the name of the
variable you want to evaluate at run time and switchValue is the value that will cause a case to
execute:
%switch variableName%
%case ‘switchValue’%
Block of Code
%case ‘switchValue’%
Block of Code
.
.
.

28 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

[%case%
Default Block

of Code]
%end%

At run time, the DSP Processor evaluates each %case% block in order, and executes the first block
whose switchValuematches the value in variableName. After processing the code within that block,
the DSP Processor skips the remaining cases in the %switch% construct.

The following example shows an %switch% construct that executes one of two cases, depending
on the contents of a variable named action.

.

.

.
%swtich action%
%case ‘shipinfo’%
%invoke orders:getShipInfo%

.

.

.
%endinvoke%

%case ‘vieworder’%
%invoke orders:getOrderInfo%
.
.
.

%endinvoke%
%endswitch%

Specifying a Default Case

If you want to specify a block of code that executes when all other cases are not true, include a
case without a switchValue. The following example illustrates how to create a default case by
omitting switchValue and putting the case at the end of the %switch% construct.

.

.

.
%switch acctType%
%case ‘Platinum’%
%include platorderform.html%

%case ‘Gold’%
%include goldform.html%

%case%
%include regorderform.html%

If you include a default case, you must put it at the end of the switch construct. For additional
information about using the %switch% tag, see the %switch% tag description on “%switch%” on
page 57.

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 29

1 Using Dynamic Server Pages (DSPs)

Inserting Text Files in a DSP
The %include% tag allows you to insert a text file in a DSP. When you use the %include% tag, the
DSP Processor inserts the specified file and evaluates its contents (and processes any tags that it
contains) from top to bottom at run time.

The basic format of the %include% tag is as follows, where fileName specifies the name of the file
that you want to insert into the DSP. (If fileName is not in the same directory as the DSP, you must
specify its path relative to the DSP as shown by the example.)

%include fileName%

Example
.
.
.

%switch acctType%
%case ‘Platinum’%
%include forms\platorderform.txt%
%case ‘Gold’%
%include forms\goldorderform.txt%
%case%
%include forms\regorderform.txt%

%endswitch%

When you insert a file, it inherits the scope that is current at the point where you call it. For
additional information about the %include% tag, see the %include% tag description on
“%include%” on page 46.

Specifying a List of Permitted URLs for Redirection
Use the %validConst% tag to specify external URLs that Integration Serverwill allow for redirection
from the page. The following example shows how to use the %validConst% tag to specify the URL
“http://example.com” as a valid URL for redirection.

Example
.
.
.

%validConst url(http://example.com)%
%endvalidConst%
.
.
.

If you want to allow more than one URL for redirection, you can specify a comma-separated list
of URLs. The following example shows how to use the %validConst% tag to specify the URLs
“http://example.com”, “http://example.org”, and “http://example.net” are valid for redirection.

30 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

Example
.
.
.

%validConst url(http://example.com,http://example.org,http://example.net)%
%endvalidConst%
.
.
.

Arbitrarily Processing DSP Tags

Integration Server automatically processes DSP tags when a DSP is requested via HTTP. You can
also process the tags in a string of text at any arbitrary point during a service using the services
in the pub.report folder. When you use these services, tags are processed against the variables that
are in the pipeline at run time.

For information about using the services in the pub.report folder, see IBM webMethods Integration
Server Built-In Services Reference.

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 31

1 Using Dynamic Server Pages (DSPs)

32 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

1 Using Dynamic Server Pages (DSPs)

2 Using Output Templates to Format Service Output

■ What is an Output Template? ... 34

■ What Does an Output Template Look Like? ... 34

■ When Does the Server Use an Output Template? ... 35

■ Creating an Output Template .. 37

■ Assigning an Output Template to a Service ... 39

■ Securing Pages and Documents Created from Output Templates 39

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 33

What is an Output Template?

Output templates allow you to insert output values from a service into a document that you define.
They work much like server-side includes (SSIs) in that they contain special “tags” that IBM
webMethods Integration Server processes before passing the document back to the client.

Output templates are similar to DSPs. In fact, the tags you use to compose DSPs are the same ones
you use to compose output templates. However, DSPs have one additional tag—the %invoke%
tag—that distinguishes them from output templates. This tag allows a DSP to invoke a service.

Output templates are used most frequently to customize the HTML page that a service returns to
a browser-based application.However, you can also use them to generate other types of documents.
For example, if you have a service that retrieves a record from a relational database, you might
use an output template to format your results as an XML document or a comma-delimited record
before returning it to the requestor.

You can also use output templates to return WML or HDML content to wireless devices, such as
an Internet-enabled wireless phone or an Internet-enabled personal digital assistant.

What Does an Output Template Look Like?

A template is simply a String containing text and one or more tags. Tags are special commands,
enclosed in % symbols, that cause IBM webMethods Integration Server to perform a specified
action—typically to insert the value of a variable—at a specified point in the String.

For example, if you have the following values in the pipeline:

Output in the Pipeline

ValueVariable Name

Bitterroot BoardsCompanyName

BTB-9590651AccountNum

Lauren CheungContactName

406-721-5000PhoneNum

You might create a template that looks as follows to return the values in an HTML document to
a browser-based client. The strings in bold are template tags instructing the server to insert specified
values from the pipeline at run time.
<!--Output Template for an HTML Document-->
==
<!DOCTYPE HTML PUBLIC>
<HTML><HEAD><META HTTP-EQUIV="Content-Type" VALUE="text/html;chaset=UTF-
8"><TITLE></TITLE></HEAD>
<BODY><P>Contact information for account %value AccountNum% is:</P>

<TABLE>
<TR><TD>Account Name</TD><TD>%value CompanyName%</TD></TR>
<TR><TD>Contact Name</TD><TD>%value ContactName%</TD></TR>

34 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

2 Using Output Templates to Format Service Output

<TR><TD>Phone Number</TD><TD>%value PhoneNum%</TD></TR>
</TABLE>

</BODY></HTML>

Output templates are not limited to HTML. You could create an output template that looks like
this to return values in an XML document:
<!--Output Template for an XML Document-->
==
<?xml version="1.0"?>
<ACCOUNT_INFO>

<ACCOUNT_NAME>%value AccountNum%</ACCOUNT_NAME>
<COMPANY_NAME>%value CompanyName%</COMPANY_NAME>
<CONTACT_NAME>%value ContactName%</CONTACT_NAME>
<PHONE_NUM>%value PhoneNum%</PHONE_NUM>

</ACCOUNT_INFO>

Or an output template that looks like this to return values as a comma-separated record:
<!--Output Template for a Comma-Separated

Values Record-->
==
%value AccountNum%,%value CompanyName%,%value

ContactName%,%value PhoneNum%

When Does the Server Use an Output Template?

The server applies output templates to the results of services that are invoked by HTTP, FTP, or
SMTP clients (i.e., requests that come through the HTTP, HTTPS, FTP, or SMTP listeners). You
can also arbitrarily apply output templates to the pipeline using the built-in services in the pub.report
folder.

Using Output Templates to Return Output to HTTP Clients
If a service has an output template assigned to it, the server automatically applies the template to
the results of the service (i.e., the contents of the pipeline) any time that service is externally invoked
by an HTTP client. (If a service does not have an output template, the server simply returns the
results of the service in the body of an HTML document, formatted as a two-column table.)

Guidelines for Using HTML-Based Output Templates with HTTP Clients

If you want to use an HTML-based output template to return output to an HTTP client, keep the
following points in mind:

Make sure the output template produces a valid HTML document.

If the client checks theContent-Type value in theHTTP response header,make sure the template
contains a <meta> tag that sets the Content Type to “text/html”.

Guidelines for Using XML-Based Output Templates with HTTP Clients

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 35

2 Using Output Templates to Format Service Output

If you want to use an XML-based output template to return output to an HTTP client, keep the
following points in mind:

Make sure the output template generates a valid and well-formed XML document.

Make sure the template contains a <meta> tag that sets the Content Type to “text/xml”.

If your client is a browser, make sure it can accept and display XML (for example, Microsoft
Internet Explorer 5.0 can display XML) or that the client machine has a MIME definition for
Content-Type “text/xml”.

Using Output Templates to Return Output to SMTP and FTP
Clients
Besides HTTP clients, the server also applies output templates to the results it returns to FTP and
email clients. However, be aware that:

For e-mail clients, the server can apply either XML- or HTML-based output templates.

For FTP clients, the server will only apply XML-based output templates. If an HTML-based
output template is assigned to the service, it is ignored.

Using Output Templates to Return Output to Wireless Devices
Integration Server can use WML (Wireless Markup Language) output templates or HDML
(Handheld Device Markup Language) output templates to return output to Internet-enabled
wireless devices. You might want to return service output in WML and HDML if you allow the
use of wireless devices to invoke services on Integration Server. For example, if you allow clients
to submit purchase orders using a wireless device, you would want to be able to send their order
confirmation to the wireless device.

For information about how Integration Server communicates with a wireless device, see IBM
webMethods Integration Server Administrator’s Guide.

Guidelines for Creating WML Output Templates

If youwant to use aWMLoutput template to return output to an Internet-enabledwireless device,
such as a wireless phone, keep the following points in mind:

The output template needs to produce a valid and well-formed WML document.

Make sure the template contains a <meta> tag that sets theContent Type to “text/vnd.wap.wml”.

Wireless devices have small screen dimensions.

The browser on the wireless device needs to support WML 1.1 or higher to receive a WML
output template from Integration Server.

Different types of web browsers on wireless devices may display WML pages differently.

36 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

2 Using Output Templates to Format Service Output

Some web browsers for wireless devices place a limitation on the length of a URL: name in
WML pages. Make sure that you create WML pages that are compliant with the browser
requirements.

For more information about WML, see http://www.oasis-open.org/cover/.

Guidelines for Creating HDML Output Templates

If you want to use an HDML output template to return output to an Internet-enabled wireless
device, such as a personal digital assistant, keep the following points in mind:

The output template needs to produce a valid HDML document.

Make sure the template contains a <meta> tag that sets the Content Type to “text/x-hdml”.

Wireless devices have small screen dimensions.

The browser on the wireless device needs to support HDML 3.0 or higher to receive anHDML
output template from Integration Server.

For more information about HDML, see http://www.Phone.com.

Applying Output Templates Arbitrarily
You can arbitrarily apply output templates to the contents of the pipeline using the built-in services
in the pub.report folder. For information about using these services, see IBM webMethods Integration
Server Built-In Services Reference.

Creating an Output Template

You can use Designer to create an output template, or you can create an output template file using
an ordinary text editor.

When you create an output template, keep the following points in mind:

You must give the output template file a name that is unique within the package in which it
resides.

If you plan to assign the output template to a service, the template file must reside in the
\templates directory of the package where the service resides (i.e.,
Integration Server_directory\packages\packageName\templates).

If you specify a file encoding other than UTF-8 in the <meta> tag of your template’s content,
the characters that you use in your template (including the data inserted into your template
using %VALUE% statements) are limited to those in the character set of the encoding you
choose.

To create the contents of an output template file, type all literal text exactly as youwant it to appear
in the result and then embed any of the following tags where you want the server to execute them
at run time. For a complete description of each tag, see “Tag Descriptions” on page 41.

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 37

2 Using Output Templates to Format Service Output

http://www.oasis-open.org/cover/
http://www.Phone.com

Important:
These tags are case sensitive andmust be typed exactly as shown in this document. Additionally,
all text between %…% symbols in a tag must appear on one line (i.e., a tag cannot contain line
breaks).

To...Use this tag...

Insert the value of the specified variable into the
output string.

%value VarName%

Limit the scope for the enclosed block of code to
those elements in the specified document.

%scope DocumentName%
.
.
.

%end%

Repeat the enclosed block of code once for each
element in the a specified array variable.

%loop VarName%
.
.
.

%end%

Conditionally include the enclosed block of code
if a variable exists or matches a specified value.

%ifvar VarName%
.
.
.

%end%

Conditionally include a block of code depending
on the value of a specified variable.

%switch VarName%
%case Value1%
%caseValue2%
%case Value3%
.
.
.

%end%

Insert and execute a specified output template.%includeTemplateName%

Limit the external URLs that can be accessed via
redirection.

%validConst urlurl1,url2,...,urln)%
%endvalidConst%

Insert new line in the output string.%nl%

Omit the enclosed block of text from the output.%comment%
.
.
.

%end%

Change the name of a variable for the purpose of
referencing it in the output template. This may

%rename VarName NewVarName%

be necessary if you include predefined output
templates that use variable names that are
different from those in the pipeline.

38 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

2 Using Output Templates to Format Service Output

For steps for creating an output template using Designer, see IBMwebMethods Service Development
Help.

Assigning an Output Template to a Service

Use of an output template to format service output is optional. You assign an output template to
a service using the Properties view in Designer.

When using output templates, keep the following points in mind:

A service can have at most one output template assigned to it at a time. You can dynamically
change the output template assignment at run time, however. For more information, see
“Applying Output Templates Arbitrarily” on page 37.

You can assign the same output template to more than one service.

If you assign an existing output template to a service, the output template must reside in the
Integration Server_directory\packages\packageName\templates directory, where packageName
is the package in which the service is located.

Note:
If you assign an output template to a service and later copy that service to a different package,
you must copy the output template file to the
Integration Server_directory\packages\packageName\templates directory of the newpackage.
(If you copy an entire package, any output templates will be included automatically.)

The server treats the case of the file name differently depending on which operating system
you are using. For example, on a case-insensitive system such as Windows, the server would
see the names “template” and “TEMPLATE” as the same name. However, on a case-sensitive
system such as UNIX, the server would see these as two different names. If you are trying to
assign an existing output template and you enter a file name in the wrong case on a UNIX
system, the wrong file name could be assigned as the output template for your service.

For steps for assigning an output template to a service, see IBM webMethods Service Development
Help.

Securing Pages and Documents Created from Output Templates

You can secure the documents and pages created from output templates against cross site scripting
(XSS) attacks. You can also limit the external URLs to which HTML pages created from an output
template can be redirected.

Securing Documents and HTML Pages Against Cross Scripting
Attacks
If you use the %value Variable% tag in output templates, the output from the tag in the resulting
documents or HTML pages created from the output templates might be vulnerable to cross site
scripting (XSS) attacks. To prevent these cross site scripting attacks, set the

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 39

2 Using Output Templates to Format Service Output

watt.core.template.enableFilterHtml parameter to true (the default).When this parameter is true,
the output from a %value Variable% tag, including XML and JavaScript, is HTML encoded.

When the watt.core.template.enableFilterHtml parameter is set to true, if you do not want
Integration Server to HTML encode the output from a %value Variable% tag, you can use the
encode(none) option of the %value Variable% tag, (%value Variable encode(none)%).

If you do not want Integration Server to HTML encode the output from any %value Variable% tag
in all documents and/or HTML pages resulting from output templates, set the
watt.core.template.enableFilterHtml parameter to false. Setting the
watt.core.template.enableFilterHtml parameter to false does not override settings of the
%value Variable% tag’s encode option.

Important:
If you use encode(none) so that the output from a %value Variable% tag is not HTML encoded,
that value is vulnerable to cross site scripting attacks. If you set the
watt.core.template.enableFilterHtml parameter to false, all documents and pages resulting
from output templates that use the %value Variable% tag are vulnerable to cross site scripting
attacks.

For more information about the encode(none) option, see “%value%” on page 61. For more
information about the watt.core.template.enableFilterHtml parameter, see IBM webMethods
Integration Server Administrator’s Guide.

Limiting the External URLs that Can Be Used for Redirection
Use the %validConst% tag in output templates to specify a list of URLs to which an HTML page
resulting from the output template can be redirected. By specifying the %validConst% tag, the page
can only be redirected to the URLs you specify.

For more information about how to use this tag, see “Specifying a List of Permitted URLs for
Redirection” on page 30.

40 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

2 Using Output Templates to Format Service Output

A Tag Descriptions

■ Overview .. 42

■ %comment% .. 43

■ %ifvar% .. 44

■ %include% .. 46

■ %invoke% ... 47

■ %loop% .. 49

■ %loopsep% .. 52

■ %nl% .. 52

■ %rename% ... 53

■ %scope% ... 54

■ %switch% ... 57

■ %sysvar% ... 59

■ %validConst% .. 60

■ %value% .. 61

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 41

Overview

This appendix describes the tags you use to construct Dynamic Server Pages (DSPs) and output
templates.

Important:
Tags are case sensitive and must be typed into a template or DSP exactly as shown in this
appendix (e.g., %loop%, not %LOOP% or %Loop%).

Important:
All text between %…% symbols in a tag must appear on one line (i.e., no line breaks).

The examples shown in this appendix assume a pipeline that looks as follows:

Contents of the Pipeline

ValueKey

Mark Asantesubmittor

991015-00104shipNum

10/15/99shipDate

UPScarrier

GroundserviceLevel

10/18/99arrivalDate

ValueKeyitems

10qty

BK-XS160stockNum

Extreme Spline 160 Snowboard- Blackdescription

GSG-99401088orderNum

Partial Orderstatus

15qty

WT-XS160stockNum

Extreme Spline 160 Snowboard- Whitedescription

GSG-99401088orderNum

Completestatus

ValueKeysupplierInfo

42 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

A Tag Descriptions

ValueKey

Bitterroot Boards, LLCcompanyName

1290 Antelope DrivestreetAddr1

streetAddr2

Missoulacity

MTstate

59801postalCode

BRB-950817-001supplierID

406-721-5000phoneNum

406-721-5001faxNum

Shipping@BitterrootBoards.comemail

ValueKeybuyerInfo

Global Sporting Goods, Inc.companyName

accountNum

(216)741-7566phoneNum

(216)741-7533faxNum

10211 Brookpark RoadstreetAddr1

streetAddr2

Clevelandcity

OHstate

22130postalCode

Receiving@GSG.comemail

SL-XS170 Extreme Spline 170 Snowboard- SilverbackItems

BL-KZ111 Kazoo 111 Junior Board- Blue

BL-KZ121 Kazoo 121 Junior Board-Blue

%comment%

You use the %comment% tag to include remarks in your code. At run time, the server ignores all text
(and tags) between the%comment% and %end% tag.

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 43

A Tag Descriptions

Syntax
%comment%
Block of Code

%end%

Effect on Scope

None

Examples

The following example contains a section of explanatory information.
%comment%
Use this template to generate an order list from any document containing
a purchased item number, quantity, description, and PO number
%end%
<tr>
<td>%value stockNum%</td>
<td>%value qty%</td>
<td>%value description%</td>
<td>%value orderNum%</td>
</tr>

%ifvar%

You use the %ifvar% tag to conditionally include or exclude a block of code based on the existence
or value of a specified variable.

Syntax
%ifvar Variable [option option
option...]%
Block of Code

[%else%
Block of Code]

%end%

Arguments

Variable specifies the name of the variable that determines whether or not the enclosed block of
code is processed.

Options

You can use any of the following options with this tag. To specify multiple options, separate them
with spaces.

44 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

A Tag Descriptions

DescriptionOptions

Includes the enclosed block of code only if Variable is null. For
example: %ifvar backItems -isnull%.

-isnull

Includes the enclosed block of code only if Variable contains one or
more characters (for string variables only). For example: %ifvar
supplierInfo/email -notempty%.

-notempty

Includes the enclosed block of code only if the value of Variable
matches the string you specify in AnyString. (AnyString is case

equals(‘AnyString’)

sensitive. “FedEx” does not match “Fedex” or “FEDEX”). For
example: %ifvar carrier equals (‘FedEx’)%.

Includes the enclosed block of code only if the value of Variable
matches the value of the variable you specify inRefVar. For example:
%ifvar supplierInfo/state vequals(buyerInfo/state)%.

vequals(RefVar)

Specifies that the condition is true if the value of Variablematches
the regular expression regular_exp. For example: %ifvar carrier

matches(‘UPS*’)%.

matches(‘regular_exp’)

Effect on Scope

None

Notes

For readability, you can optionally use %endif% or %endifvar% instead of %end% to denote the end
of the %ifvar% block.

Examples

The following example inserts a paragraph if a variable named AuthCode exists.
.
.
.
%ifvar AuthCode%
<p>Authorization Code Received %value $date%: %value AuthCode</p>

%endif%
.
.
.

The following example generates a line for each element in the backItems String list only if backItems
exists; otherwise, it prints a standard message.
.
.
.
%ifvar backitems%

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 45

A Tag Descriptions

<p>The following items are backordered</p>
<p>
%loop backItems%
%value%

%endloop%
</p>
%else%
<p>There are no backordered items pending for your account</p>

%end%
.
.
.

%include%

You use the %include% tag to reference a text file. When you %include% a text file, the server inserts
the contents of the specified file (processing any tags it contains) at run time. If you use template
and/or DSPs extensively, you may want to build a library of standard “code fragments” that you
reference using %include% tags as needed.

Syntax

%include FileName%

Arguments

FileName specifies the name of the text file that you want to insert. If the text file is not in the same
directory as the template or DSP that references it, FileNamemust specify its path relative to the
template or DSP file.

Effect on Scope

None. If the inserted file contains tags, they inherit the scope that is in effect at the point where
the %include% tag appears.

Examples

The following example inserts a file called “TMPL_ShipToBlock.html” into the code. Because path
information is not provided, the server expects to find this file in the same directory as the file
containing the template or DSP.
.
.
.
%scope buyerInfo%
<p>Shipped To:

%include TMPL_ShipToBlock.html%</p>

%end%
.
.
.

46 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

A Tag Descriptions

The following example inserts a file called “TMPL_ShipToBlock.html” into the code. At run time,
the server expects to find this file in a subdirectory called “StandardDSPs” in the directory where
the template or DSP resides.
.
.
.
%scope buyerInfo%
<p>Shipped To:

%include StandardDSPs/TMPL_ShipToBlock.html%</p>

%end%
.
.
.

The following example inserts a file called “TMPL_ShipToBlock.html” into the code. At run time,
the server expects to find this file in the template or DSPs parent directory.
.
.
.
%scope buyerInfo%
<p>Shipped To:

%include ../TMPL_ShipToBlock.html%</p>

%end%
.
.
.

%invoke%

You use the %invoke% tag to execute a service from aDSP.When you use this tag, the server executes
the specified service at run time and returns the results of the service to theDSP. Youmay optionally
include the %onerror% tag within the %invoke% block to define a block of code that executes if an
exception occurs while the service executes or the service returns an error.

This tag can only be used in DSPs. It cannot be used in an output template.

Syntax
%invoke serviceName%
Block of Code

[%onerror%

Block of Code]
%end%

Arguments

serviceName specifies the fully qualified name of the service that you want to invoke.

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 47

A Tag Descriptions

Effect on Scope

Within an %invoke% block, the scope switches to the results of the service. If the service fails, the
scope within the %onerror% block contains the following:

DescriptionKey

A String containing the Java class name of the exception that was thrown
(e.g., com.wm.app.b2b.server.AccessException).

error

A String containing the exception message.errorMessage

The IData object that was passed to the invoked service.errorInput

The IData object containing the output returned by the invoked service. If
the service returned an error, errorOutputwill contain $error. If the service
experienced an exception, errorOutputwill not exist.

errorOutput

The name of the invoked service.errorService

Examples

The following example invokes a service that returns shipping information and a form allowing
the user to optionally edit or cancel an order. This example also includes a %onerror% block that
displays error information if the service fails.
%invoke orders:getShipInfo%
<H2>Shipping Details for Order %value /oNum%</H2>
<P>Date Shipped: %value shipDate%

Carrier: %value carrier% %value serviceLevel%
</P>
<HR>
%ifvar shipDate -isnotempty%

<FORM ACTION="http://rubicon:5555/orders/editShipInfo.dsp" METHOD="get">
<P>Change this Shipment:</P>
<P><INPUT TYPE="RADIO" NAME="action" VALUE="edit">

Edit Shipment Details</P>
<P><INPUT TYPE="RADIO" NAME=action" VALUE="cancel">

Cancel this shipment</P>
<INPUT TYPE="SUBMIT" VALUE="Submit">

<INPUT TYPE="HIDDEN" NAME="oNum" VALUE="%value /oNum">
</FORM>
<HR>

%endifvar%
<P><A HREF="http://rubicon:5555/orders/getorder.dsp

?action=showorder&oNum=%value /oNum%">View Entire Order</P>
%onerror%
<HR>
<P>The Server could not process your request
because the following error occurred. Contact your server
administrator.</P>
<TABLE WIDTH="50%" BORDER="1">

<TR><TD>Service</TD><TD>%value errorService%</TD></TR>
<TR><TD>Error</TD><TD>%value error%

48 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

A Tag Descriptions

%value errorMessage%</TD></TR>
</TABLE>
<HR>

%endinvoke%
.
.
.

%loop%

You use the %loop% tag to repeat a block of code once for each element in a specified array (String
list or document list) or for each key in a document.

Syntax
%loop [Variable] [option option
option...]%

Block of Code
%end%

Arguments

Variable specifies the name of the array variable over which you want the enclosed section of code
to iterate.

You may optionally omit Variable and specify the –struct option to loop over each element in
the current scope.

When looping against a set of complex elements (e.g., documents, document lists, String lists)
in a document, you can optionally use the #$key keyword to specifyVariable instead of explicitly
specifying a key name. When you use #$key in place of an explicit key name, it indicates that
youwant to apply the body of the loop to (i.e., switch the scope to) the current key. This allows
you to process the contents of a document whose key names are not known. It is most often
usedwith the –struct option to process a set of documents containedwithin another document.
For an example of how this option is used, see the examples, below.

The loop is applied to...If Variable is a...

Each String in the list.String list

Each document in the document list.Document list

Each key in the document. When you use %loop% to process the elements of
a document, you must also use the –struct option in the %loop% tag.

Document

Options

You can use any of the following options with this tag. To specify multiple options, separate the
options with spaces.

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 49

A Tag Descriptions

DescriptionOptions

Specifies that Variable is a document and instructs the server to apply the
loop once to each key in that document.

-struct

When you use the –struct option, you can use the $key variable to retrieve
the name of each element in the document. See examples, below.

Ends the body of the loop at the next end-of-line (EOL) character in the code.
When you use –eol, you can omit the %end% tag.

-eol

Returns the current index number in an array. You can use it within a loop
to obtain the index number upon which the loop is acting during each
iteration.

-$index

Effect on Scope

If Variable is a document list, scope switches to the document on which the loop is executing.

Notes

Omit the variable name from the %value% tag if it is used in the body of a loop for a String table
or a document. When variable name is omitted, the server inserts the value of the current element
at run time.

For readability, you can optionally use %endloop% instead of %end% to denote the end of a %loop%

block.

Examples

The following example generates a paragraph for each document in the items document list.
.
.
.
<p>This shipment contains the following items:</p>
%loop items%
<p>%value qty% %value stockNum% %value description% %value status%</p>

%end%
.
.
.

The following example generates a line for each element in the backItems String list.
.
.
.
<p>The following items are backordered</p>
<p>
%loop backItems%
%value%

%end%

50 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

A Tag Descriptions

</p>
.
.
.

The following example shows how you can nest %loop% tags to process the individual document
elements in a document list.
.
.
.
<This shipment contains the following items:</p>
<table>
%loop items%
<tr>
%loop -struct%
<td>%value%</td>
%end%

</tr>
%end%
.
.
.

The following example shows how you can use the %loop% tag to dump the contents (key names
and values) of the current scope.
.
.
.
%loop -struct%
%value $key% %value%

%end%
.
.
.

The following example shows how you use the #$key option to loop over the individual elements
in a collection of documents contained within another document.
This example assumes that the service returns a document named MatchingAddress
that holds a set of documents (of unknown name and quantity) containing
address information.
.
.
.
<p>The following addresses were returned:</p>
%loop -struct MatchingAddresses%
%loop -struct #$key%
<p>
%value streetAddr1%
%value streetAddr2%
%value city%, %value state% %value postalCode%

</p>
%end%

%end%
.
.
.

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 51

A Tag Descriptions

The following example shows how to obtain the iteration number of the loop execution and insert
it into the output:

indices = {%loop arrayA%%value $index%%loopsep ’,’%%endloop%}

When ArrayA has three elements, the output will be:
indices = {0,1,2}

%loopsep%

You use the %loopsep% tag to insert a specified character sequence between the results from a
%loop% block.

Syntax

%loopsep ‘sepString’%

Arguments

sepString is a string that you want to insert between each result.

Effect on Scope

None

Notes

%loopsep% does not insert sepString after the result produced by the last iteration of the loop.

Examples

The following example inserts a comma between each value produced by the loop.
.
.
.
%loop items%

%loop -struct%
%value%
%loopsep ‘,’%

%endloop%
%endloop%
.
.
.

%nl%

You use the %nl% tag to generate a new line character in the code. The tag is useful when you want
to preserve the ending of a line that ends in a tag. If you do not explicitly insert a %nl% tag on such

52 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

A Tag Descriptions

lines, the server drops the new line character following that tag. (Note that this tag does not insert
the HTML line break
 code. It merely inserts a line break character, which is treated as white
space.) The main reason you use this tag is to preserve the format of the underlying code in a DSP,
which can make it easier to read during debugging.

Syntax

%nl%

Effect on Scope

None

Examples

The following example shows how the %nl% tag is used to preserve the line endings on lines
occupied by the three %value% tags. If the %nl% tag did not appear in this code, the three lineswould
be concatenated in the HTML document generated by the server.
.
.
.
<hr>
<p>Shipping Info:
%value carrier%%nl%
%value serviceLevel%%nl%
%value arrivalDate%%nl%</p>
<hr>
.
.
.

%rename%

You use the %rename% tag to move or copy a variable in the pipeline.

Syntax

%rename SourceVar TargetVar [option option option...]%

Arguments

SourceVar is the name of the variable that you want to move or copy. SourceVar can reside in any
existing scope or document.

TargetVar specifies the name of the variable towhich youwant SourceVarmoved or copied.TargetVar
must be in the current scope. If TargetVar does not exist, it will be created. If TargetVar already
exists, it will be overwritten.

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 53

A Tag Descriptions

Options

You can use the following option with this tag.

DescriptionOption

Copies SourceVar to TargetVar instead of moving it to TargetVar.-copy

If you do not use -copy, SourceVar is deleted after its contents are copied to
TargetVar.

Effect on Scope

Does not cause scope to switch to a different level, but, depending on how you use this tag, it may
alter the contents of the current scope.

Examples

The following example renames the state variable in the current scope.
.
.
.
%scope buyerInfo%
%rename state ST%

%invoke TMPL_ShipToBlock.html%</p>
%end%

.

.

.

The following example copies the variable named oNum from the previous scope into the current
scope.
.
.
.
%invoke orders:getCustInfo%</p>
%rename ../oNum oNum -copy%
%invoke orders:getOrderDetails%</p>
.
.
.

%scope%

You use the %scope% tag to restrict a specified block of code to a particular document in the pipeline.
You can also use the %scope% tag to define a completely new document and switch the scope to
that document.

54 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

A Tag Descriptions

Syntax
%scope [DocumentName] [option
option option...]%
Block of Code

%end%

Arguments

DocumentName specifies the name of a document within the current scope. If you do not specify
DocumentName, the param and rparam options will extend the current scope. If you specify a new
DocumentName, the scope switches to that document.

Options

You can use any of the following options to add elements to the scope specified byDocumentName.
When you specify multiple options, separate them with spaces.

Important:
If you set the value of an existing variable with these options, the value you specify will replace
the variable’s current value.

Note:
For space reasons, the %scope% tag is shown on multiple lines in some of the examples below.
Be aware that when you use the %scope% tag in a template or DSP, the entire tag must appear on
one line.

DescriptionOption

Defines a new String or String arraywith the name you specify
in Name and assigns to it the string you specify in Value.

param(Name=’Value’)

If Name is a String, specify one Value and enclose it in single
quotes. For example:

%scope param(buyerClass=’Gold’)%

If Name is a String array:

Include a set of empty brackets at the end of the name to
indicate that you are defining an array.

Enclose each element Value in single quotes.

Separate elements with commas.

For example:

%scope param(shipPoints[]=’BWI’,’LAX’,

’ORD’,’MSP’,’DFW’)%

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 55

A Tag Descriptions

DescriptionOption

Defines a new document or document list with the name you
specify in Name, and assigns to it, values that you provide in a
list of Key=Value pairs.

rparam(Name={Key=’Value’;

Key=’Value;Key=’Value’})

If Name is a document:

Enclose its list of elements in braces { }.

Separate the elements with semicolons.

Enclose Value strings in single quotes.

For example:

%scope rparam(custServiceInfo=

{csClass=’Gold’;csPhone=’800-444-2300’; csRep=’Lauren

Cheung’})%

If Name is a document list:

Enclose each document in the list with braces { }.

Separate documents with vertical bars |.

Separate elements within each document with semicolons.

Enclose Value strings in single quotes.

For example:

%scope rparam(custServiceCtrs[]=

{csName='Memphis';csPhone='800-444-2300';}|

{csName='Troy';csPhone='800-444-3300';}|

{csName='Austin';csPhone='800-444-4300';})%

Effect on Scope

Switches scope to the specified document.

Notes

The specified scope remains in effect until the next %scope% tag is encountered (which declares a
new scope) or the next, non-nested %end% tag is encountered (which reverts to the prior scope).

For readability, youmay use %endscope% instead of %end% to denote the end of the %scope% structure.

Examples

The following example sets the scope to the document named buyerInfo.
.

56 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

A Tag Descriptions

.

.
%scope buyerInfo%
<p>Shipped To:

%value companyName%

%value streetAddr1%

%value streetAddr2%

%value city%, %value state% %value postalCode%

%end%
.
.
.

The following example sets the scope to document buyerInfo and then uses the param option to add
variables called buyerClass and shipPoint to that document.
.
.
.
%scope buyerInfo param(buyerClass=’Gold’) param(shipPoint=’BWI Hub’)%
<p>Shipped To:

%value companyName%

%value streetAddr1%

%value streetAddr2%

%value city%, %value state% %value postalCode%</p>

<hr>
<p>Point of Departure: %value shipPoint%

Customer Class: %value buyerClass%</p>

%end%
.
.
.

The following example sets the scope to document buyerInfo and then uses the rparam option to
add a String variable named req to that scope before invoking a service.
.
.
.
<p>Open Orders:</p>
%scope buyerInfo rparam(req=openorders)%
%invoke orders:getOrderInfo%

%loop orders%
Date: %value oDate%
Number: %value oNum%

%endloop%
<p>Click Order Number to View Details:</p>
%endscope%
.
.
.

%switch%

You use the %switch% tag to process one block from a series of predefined alternatives based on
the value of a specified variable at run time.

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 57

A Tag Descriptions

Syntax
%switch Variable%
%case ‘SwitchValue’%
Block of Code

%case ‘SwtichValue’%
Block of Code

.

.

.
[%case%
Default Block

of Code]
%end%

Arguments

Variable specifies the name of the variable whose value will determine which case is processed at
run time.

SwitchValue is a string that specifies the value that will cause the associated case to be processed
at run time.

Effect on Scope

None

Notes

To select a case, SwitchValuemust match the value of Variable exactly. SwitchValue is case
sensitive—”FedEx” does not match “Fedex” or “FEDEX”.

The server evaluates %case% tags in the order that they appear in your code.When it finds a “true”
case, it processes the associated block of code and then exits the %switch%…%end% structure.

You can specify a default case using the %case% tagwithout a SwitchValue. This casewill be processed
if Variable does not exist or if none of the other cases are true. The default case must appear as the
last %case% in the %switch%…%end% structure.

For readability, you can optionally use %endswitch% instead of %end% to denote the end of the
%switch% structure.

Examples

The following example inserts a specified paragraph, depending on the value in carrier.
.
.

.
%switch carrier%
%case ‘FedEx’%
<p>Shipped via Federal Express %value serviceLevel% %value trackNum%

58 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

A Tag Descriptions

%case ‘UPS’%
<p>Shipped via UPS %value serviceLevel%
%case ‘Freight’%
<p>Shipped via %transCompany%

FOB: %value buyerInfo/streetAddr1%

%value buyerInfo/streetAddr2%

%value city%, %value state% %postalCode%

%end%
</p>
.
.
.

The following example invokes different services based on the value of a variable named action.
<HTML>
<HEAD>
<title>Order Tracking System</title>
</HEAD>
<BODY BGCOLOR="#FFFFCC">
<H1>Order Tracking System</H1>
<HR>
%switch action%
%case ‘shipinfo’%
%invoke orders:getShipInfo%
.
.

%case ‘showorder’%
%invoke orders:getOrderInfo%
.
.

%case ‘showinvoice’%
%invoke orders:getInvoices%
.
.

%end%
<HR>
%include stdFooter.txt%
</BODY>
</HTML>

%sysvar%

You use the %sysvar% tag to insert the value of a special variable or server property into the
document.

Syntax

%sysvar SystemVariable%

Arguments

SystemVariable is one of the following values, indicating which system variable or property you
want to insert.

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 59

A Tag Descriptions

DescriptionValue

Inserts the name of the server that processed the DSP or template.host

Inserts the current date. The date will appear in “Weekday Month Day
HH:MM:SS Locale Year” format—e.g., Fri Aug 12 04:15:30 Pacific

2007.

date

Inserts the date and time that this file was last modified. The date will
appear in “Weekday Month Day HH:MM:SS Locale Year” format—e.g.,
Fri Aug 12 04:15:30 Pacific 2007.

lastmod

Inserts the current value of the server property specified by propertyName
(e.g., watt.server.port). See IBM webMethods Integration Server
Administrator’s Guide for a list of server properties.

property

(propertyName)

Effect on Scope

None

Examples

The following example inserts the name of the server processing the DSP or template and the date
on which it was processed:
.
.
.
Response generated on %sysvar date% by host %sysvar host%
.
.
.

The following example includes the value of the “watt.server.port” property, which identifies the
server’s main HTTP listening port:
.
.
.
<p>
%sysvar host% was listening on %sysvar property(watt.server.port)%
<p>
.
.
.

%validConst%

You use the %validConst% tag to specify a list of external URLs that will be permitted for redirection
from the page.

60 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

A Tag Descriptions

Syntax
%validConst url(url1,url2,...,urln)%
%endvalidConst%

Arguments

url(url1,url2,...urln)% is one or more URLs to which the page can be redirected. Use a
comma-separated list to specify more than one URL.

Effect on Scope

None

Examples

The following example shows how to allow the page to redirect to the URLs http://example.com,
http://example.org, and http://example.net:
.
.
.
%validConst url(http://example.com,http://example.org,http://example.net)
%endvalidConst
.
.
.

%value%

You use the %value% tag to insert the value of a specified variable in a document.

Syntax

%value [Variable] [option option option...]%

Arguments

Variable specifies the name of the variable whose value you want to insert into the code. You may
specify the name of a variable that exists in the pipeline or the following keyword/reservedwords.

DescriptionVariable

Inserts the name of the current key. You can use this keyword when
looping over a document (i.e., using the %loop –struct% tag) to retrieve
the name of each key in the current scope or a specified document.

$key

Instructs Integration Server to redirect to the specified URL. IBM
recommends that you only use the reserved words url or returnurl

url url

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 61

A Tag Descriptions

DescriptionVariable

returnurl url when you want to redirect a DSP page to a location internal to
Integration Server, by using a relative path (e.g., %value url

../redirectedurl.dsp%), or to redirect to an external URL that you
have allowed using the %validConst% tag.

If you attempt to use the reserved words url or returnurl to redirect
to an external URL (e.g., http://example.com) that you have not allowed
using the %validConst% tag, the setting of the
watt.core.template.enableSecureUrlRedirection server configuration
parameter governs the server’s behavior. When the
watt.core.template.enableSecureUrlRedirection parameter is:

true, Integration Server uses secureURL redirection and prepends
the value “error.dsp?data=” to the output of the %value% tag (e.g.,
error.dsp?data=http://example.com). This is the default setting for
the watt.core.template.enableSecureUrlRedirection parameter.

false, Integration Server does not use secureURL redirection. That
is, Integration Server does not prepend “error.dsp?data=” to the
external URL and, as a result, redirection to the external URL is
possible, which might put your application at risk.

When you specify Variable, the server retrieves the variable from the current scope. To select a
variable outside the current scope, you use the following symbols to address it.

To...You would use...

Insert Variable from the initial scope./Variable

Insert Variable from the parent of the current scope.../Variable

Insert Variable from a document named DocName.DocName/Variable

If you don’t specifyVariable, the current elementwithin the current scope is assumed. (See example
of this usage, below.)

Options

You can use any of the following options with this tag. To specify multiple options, separate the
options with spaces.

DescriptionOption

Specifies the string that you want the server to insert when Variable is
null. You specify the string inAnyString. For example: %value carrier

null=’No Carrier Assigned’%.

null=’AnyString’

62 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

A Tag Descriptions

DescriptionOption

Specifies the string that you want the server to insert when Variable
contains an empty string. You specify the string in AnyString. For
example: %value description empty=’Description Not Found’%.

empty=’AnyString’

Specifies the index of an element that you want to insert. You can use
this option to extract an element from an array variable. Specify an

index=IndexNum

integer that represents the element’s position in the array. (Arrays are
zero based.) For example: %value backItems index=1%.

Returns the current index number in an array. This option is usually
usedwith the %loop% tag to print the loop’s iteration. See “%loop%” on
page 49 for more information and an example.

$index

Encodes the contents of Variable prior to inserting it, where Code
specifies the encoding systemyouwant the server to apply to the string.

encode(Code)

To encode the value using...Set Code to...

XML encodingxml

Base-64 encodingb64

URL encodingurl

No encodingnone

Note:
When the watt.core.template.enableFilterHtml parameter is set to
true (the default), the output from a %value Variable% tag, including
XMLand JavaScript, is HTML encoded to prevent cross site scripting
attacks. To display the valuewithoutHTMLencoding, use the encode
option with Code set to none (%value Variable encode(none)%). For
more information about the watt.core.template.enableFilterHtml
parameter, see IBM webMethods Integration Server Administrator’s
Guide.

Decodes the contents of Variable prior to inserting it, where Code
specifies the way in which Variable is currently encoded.

decode(Code)

To encode the value using...Set Code to...

Base-64 encodingb64

URL encodingurl

Effect on Scope

None

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 63

A Tag Descriptions

Examples

The following example invokes a service and then uses the %value% tag to insert the results of the
service into the DSP
.
.
.
%invoke orders:getOrderInfo%

<p>%value buyerInfo/companyName%

%value buyerInfo/acctNum%
<P>This shipment contains the following items</P>
<TABLE WIDTH="90%" BORDER="1">
<TR><TD>Number</TD><TD>Qty</TD><TD>Description</TD><TD>Status</TD></TR>
%loop items%
<TD>%value stockNum%</TD>
<TD>%value qty%</TD>
<TD>%value description%</TD>
<TD>%value status%</TD>
</TR>

%endLOOP%
</TABLE>

%endinvoke%
.
.
.

The following example dumps the content of the current scope.
.
.
.
<p>
%loop -struct%

%value $key% %value%

%endloop%

<p>
.
.
.

The following example inserts the contents of carrier. If carrier is null, the string “UPS” is inserted.
If carrier is empty, the string “UPS” is also inserted.

%value carrier null=UPS empty=UPS%

64 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

A Tag Descriptions

B DSPs and Output Templates in Different

Languages

■ Overview .. 66

■ Creating DSPs and Templates in Other Languages ... 66

■ Using Localized DSPs and Templates .. 67

■ The localeID Value ... 70

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 65

Overview

This appendix contains procedures and guidelines for usingDSPs and output templates in different
languages (or for translating into other languages) with IBM webMethods Integration Server.

Creating DSPs and Templates in Other Languages

Creating Localized DSPs and Templates

A localized DSP or template simply means that it is a DSP or template tailored to display on a
client machine that uses a particular language. The term “locale” is used to represent the language
and the country that the language is used in, given that language usage is different depending on
the country (for example, English in the United States versus English in the United Kingdom).

You create a localized DSP or template just like any other DSP or template. For details, see “Using
Dynamic Server Pages (DSPs)” on page 7. Keep the following points in mind:

You should create a default DSP or template file in case of error, if one does not already exist.
For details, see “Creating a Default DSP or Template” on page 66.

Youmust create the localized file using the same encoding as the default file, if it exists. Using
UTF-8 encoding will reduce difficulty in localizing later into other languages.

Creating a Default DSP or Template
Before publishing your localized DSPs or templates to Integration Server, it is recommended that
you create a default DSP or template. This prevents errors from being displayed when a client
machine’s locale does notmatch any localizedDSPs or templates within the package on the server.
If this occurs, an error appears to the user unless a default DSP or template is present. If it is present,
that file appears instead of the error.

You create a default DSP or template like any other DSP or template; however, it must have the
same filename and encoding as the localized DSP or template. Create the default file with UTF-8
encoding to reduce difficulty in localizing later into other languages. In addition, keep the contents
of this file generic, because it is displayed for all languages and locales except for the ones for
which you provided localized files.

You can create the default file in any language. Select the language for the file carefully, because
the default file will be displayed to all users for who you did not supply a specific file for their
locale (or to those users who did not set their browser to request a language).

The default file is located at the root directory of published DSPs and templates in a package. For
details on creating DSPs or templates, see “Using Dynamic Server Pages (DSPs)” on page 7 or
“Using Output Templates to Format Service Output” on page 33. For details on publishing the
default DSP or template to the server, see the next section.

Points to Remember

66 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

B DSPs and Output Templates in Different Languages

Youmust create the default DSP or output template file with the same filename and encoding
as its corresponding localized files on the server.

You should create the default file with UTF-8 encoding to reduce difficulty in localizing later
into other languages.

Keep the contents of the default file generic.

Note:
If you already created or imported an output template in Designer for a service in a package,
then you already have a default template for that package.

Using Localized DSPs and Templates

Setting Up Your Browser
The first step in using a localized DSP or template is to make sure that your Internet browser will
load and display it in the appropriate language. Integration Server stores this setting as your user
locale.

If you do not set a language preference in your browser and you runWindows, Integration Server
uses the default language that Windows uses. (This information is inferred from the HTTP
Accept-Language header sent by your browser.)

For instructions for setting language preferences, see your browser’s help.

Publishing Localized DSPs and Templates
Before you publish your localized DSPs and templates to Integration Server, make sure that you
saved the files with the same encoding as the default language file. It is strongly recommended
to use UTF-8 encoding for all DSPs and templates, particularly in multilingual environments.

Publishing localizedDSPs and templates to Integration Server is relatively simple. After you create
your localized DSP or template file (and a default file), you place the DSP or template file in a
directory on the server. See the following procedures.

Publishing a Localized DSP to the Server

To publish a localized DSP to the server

1. Save the DSP document in a text file that has a “.dsp” extension. Make sure that the default
DSPfile has the samename and encoding as the localizedDSPfile. For example: showorders.dsp.

2. Place the default DSP file in the pub directory of the package in which you want the DSP to
reside. For example, to publish a default DSP in the orders package, you would copy it to:

Integration Server_directory\packages\orders\pub

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 67

B DSPs and Output Templates in Different Languages

3. Place the localizedDSP file in the pub\localeID directory of the package in which you want the
DSP to reside. You may have to create this directory. The localeID corresponds to a language
code as defined in RFC 3066 by the W3C. For details on localeID values, see “The localeID
Value” on page 70. For example:

To publish a Japanese DSP in the orders package, you would copy it to:

\packages\orders\pub\ja\

To publish an English DSP in the orders package, you would copy it to:

\packages\orders\pub\en\

To publish a United Kingdom English DSP in the orders package, you would copy it to:

\packages\orders\pub\en-GB\

To publish a United Kingdom English DSP to the status subdirectory within the orders
package, you would copy it to:

\packages\orders\pub\en-GB\status\

Publishing a Localized Template to the Server

To publish a localized template to the server

1. Save the template document to a file. Make sure that the default template file has the same
name as the localized template file. For example: showorders.html.

2. Place the default template file in the templates directory of the package in which you want the
template to reside. For example, to publish a default template in the orders package, youwould
copy it to:

Integration Server_directory\packages\orders\templates\

3. Place the localized template file in the templates\localeID directory of the package inwhich you
want the template to reside. You may have to create this directory. The localeID corresponds
to a language and country code as defined in RFC 3066 by the W3C. For details on localeID
values, see “The localeID Value” on page 70. For example:

To publish a Japanese template in the orders package, you would copy it to:

Integration Server_directory\packages\orders\templates\ja\

To publish an English template in the orders package, you would copy it to:

Integration Server_directory\packages\orders\templates\en\

To publish a United Kingdom English template in the orders package, you would copy it
to:

Integration Server_directory\packages\orders\templates\en-GB\

68 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

B DSPs and Output Templates in Different Languages

To publish a United Kingdom English template in the status subdirectory within the orders
package, you would copy it to:

Integration Server_directory\packages\orders\templates\en-GB\status\

Note:
If you have references to other files within your DSP or template (for example, CSS and GIF
files), the same localization rules apply. Make sure to publish those files in the appropriate
directory for locale.

Requesting a Localized DSP
To process a localized DSP, you request it from a browser using the following URL format:

http://hostName:portNum/packageName/fileName.dsp

For details on the values in the URL, see “Requesting DSPs” on page 14.

Examples

The following URL retrieves showorders.dsp from a package named ORDER_TRAK on a server
named rubicon:

http://rubicon:5555/ORDER_TRAK/showorders.dsp

If the client machine has a Japanese locale:

Integration Server looks for:

Integration Server_directory\packages\ORDER_TRAK\ja-JP\showorders.dsp

If not found, then it looks for just the language code of the localeID as follows:

Integration Server_directory\packages\ORDER_TRAK\ja\showorders.dsp

If not found, then it looks for the next language listed in the browser language settings. If
another language is not listed, then it looks for a default DSP at:

Integration Server_directory\packages\ORDER_TRAK\showorders.dsp

If a default DSP does not exist, then an error appears in the browser.

The following URL retrieves showorders.dsp from the STATUS subdirectory in a package named
ORDER_TRAK on a server named rubicon:

http://rubicon:5555/ORDER_TRAK/STATUS/showorders.dsp

If the client machine has a United States English locale:

Integration Server looks for:

Integration Server_directory\packages\ORDER_TRAK\STATUS\ en-US\showorders.dsp

If not found, then it looks for just the language code of the localeID as follows:

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 69

B DSPs and Output Templates in Different Languages

Integration Server_directory\packages\ORDER_TRAK\STATUS\en\ showorders.dsp

If not found, then it looks for the next language listed in the browser language settings. If
another language is not listed, then it looks for a default DSP at:

Integration Server_directory\packages\ORDER_TRAK\STATUS\showorders.dsp

If a default DSP does not exist, then an error appears in the browser.

The localeID Value

When you publish localized DSPs and templates to Integration Server, they must reside in
directories that correspond to the appropriate locales. The localeID value represents the locale in
the following directory path:

Integration Server_directory\packages\orders\pub\localeID\

The localeID value corresponds to the language code and country code of the locale as defined in
RFC 3066 by the W3C. The syntax of the localeID is as follows:

languagecode-COUNTRYCODE

where:

Is the language code as defined by ISO-639. This value must be lowercase.languagecode

Is the country code as defined by ISO-3166. This value must be uppercase.COUNTRYCODE

If this value is not supplied at run time, Integration Server uses the language
code only. If the language code is not supplied, then the default DSP or
template (if present) is displayed in the browser.

You can also have a localeID that is less specific by using the language code only. For examples,
see the following table.

Represents...This localeID...

English as used in the United Statesen-US

English as used in the United Kingdomen-GB

English, non-country specificen

Japanese as used in Japanja-JP

Japanese, non-country specificja

French as used in Canadafr-CA

For More Information
For a full listing of language codes as defined by ISO-639, see:

70 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

B DSPs and Output Templates in Different Languages

http://www.loc.gov/standards/iso639-2/langcodes.html

For a full listing of country codes as defined by ISO-3166, see:

http://www.iso.org/iso/country_codes

For details on RFC 3066, which established the localeID format, see:

http://www.ietf.org/rfc/rfc3066.txt

Dynamic Server Pages and Output Templates Developer’s Guide 11.1 71

B DSPs and Output Templates in Different Languages

http://www.loc.gov/standards/iso639-2/langcodes.html
http://www.iso.org/iso/country_codes
http://www.ietf.org/rfc/rfc3066.txt

72 Dynamic Server Pages and Output Templates Developer’s Guide 11.1

B DSPs and Output Templates in Different Languages

	Table of Contents
	About this Guide
	Document ​Conventions

	1 Using ​Dynamic ​Server ​Pages ​(DSPs)
	What ​Is ​a ​Dynamic ​Server ​Page?
	Creating ​DSPs
	Publishing ​DSPs
	Securing ​DSPs
	Requesting ​DSPs
	Hyperlinks ​to ​DSPs
	Using ​the ​DSP ​Tags
	Arbitrarily ​Processing ​DSP ​Tags

	2 Using ​Output ​Templates ​to ​Format ​Service ​Output
	What ​is ​an ​Output ​Template?
	What ​Does ​an ​Output ​Template ​Look ​Like?
	When ​Does ​the ​Server ​Use ​an ​Output ​Template?
	Creating ​an ​Output ​Template
	Assigning ​an ​Output ​Template ​to ​a ​Service
	Securing ​Pages ​and ​Documents ​Created ​from ​Output ​Templates

	A Tag ​Descriptions
	Overview
	%comment%
	%ifvar%
	%include%
	%invoke%
	%loop%
	%loopsep%
	%nl%
	%rename%
	%scope%
	%switch%
	%sysvar%
	%validConst%
	%value%

	B DSPs ​and ​Output ​Templates ​in ​Different ​Languages
	Overview
	Creating ​DSPs ​and ​Templates ​in ​Other ​Languages
	Using ​Localized ​DSPs ​and ​Templates
	The localeID ​Value

